future of protein production with plates with healthy food and protein

University of Leeds researchers looking into making plant-based meat alternatives more palatable

August 14, 2023

One of the biggest obstacles to the uptake of plant-based alternatives to meat is their very dry and astringent feel when they are eaten.

Scientists, led by Professor Anwesha Sarkar at the University of Leeds, are revolutionizing the sensation of plant proteins, transforming them from a substance that can be experienced as gloopy and dry to one that is juicy and fat like. And the only substance they are adding to the plant proteins is water. To bring about this change, the scientists created plant protein microgels, through a process called microgeletion.

Plant proteins – which start off as dry with a rough texture – are placed in water and subjected to heating. This alters the structure of the protein molecules which come together to form an interconnected network or gel which traps water around the plant proteins.

The gel is then homogenized, which breaks the protein network into a microgel made up of tiny particles that cannot be seen with the naked eye. Under pressure, as they would be when they are being eaten, the microgels ooze water, creating a lubricity akin to that of single cream.

"What we have done is converted the dry plant protein into a hydrated one, using the plant protein to form a spider-like web that holds the water around the plant protein," said Professor Sarkar. "This gives the much-needed hydration and juicy feel in the mouth.

"Plant-based protein microgels can be created without having to use any added chemicals or agents using a technique that is widely available and currently used in the food industry. The key ingredient is water."

The research team, who have published their findings in the journal Nature Communications, say the dryness of plant proteins has been a "key bottleneck for consumer acceptability".

With the breakthrough, the research team hope consumer interest in plant-based proteins will be revitalized, encouraging people to reduce their reliance on animal products for protein intake, a necessary step if global climate change targets are to be met.

More than half of the 18 billion metric tons of carbon dioxide equivalents produced each year from food production comes from rearing and processing animal products.

The researchers say the protein microgels "offer a unique platform to design the next generation of healthy, palatable and sustainable foods".

Throughout the investigation, the team had mathematically modeled the behavior of plant protein microgels and were confident their approach would work.

But the proof came in visualizations produced in the atomic force microscopy suite in the Faculty of Engineering and Physical Sciences at Leeds. Atomic force microscopy involves a tiny probe scanning the surface of a molecule to get a picture of its shape.

What those images revealed amounted to a proof of concept.

"Seeing the images from the atomic force microscope was a such as exciting moment for us," Professor Sarkar added. "The visualizations revealed that the protein microgels were pretty much spherical and not aggregating or clumping together. We could see individually spaced plant protein microgels.

"Our theoretical studies had said this is what would happen but there is nothing quite like seeing it for real."

Dr Mel Holmes, Associate Professor in the School of Food Science and Nutrition at Leeds and one of the authors of the paper, added, "This study reveals the ingenuity and depth of science involved in modern food technology, from the chemistry of proteins, the way food is sensed in the mouth to an understanding of tribology – the friction between materials and sensory cells in the mouth. Tackling the big questions in food science requires interdisciplinary science."

Given the lubricity of the microgels, akin to that of a single cream, means they could be adapted for other uses in the food processing industry, such as replacing fat that has been removed from a foodstuff to develop healthier options.

Ben Kew, doctoral student in the School of Food Science and Nutrition at Leeds and lead researcher in the project, said, "This is quite a remarkable finding. It is striking that without adding a drop of fat, the microgels resembles the lubricity of a 20% fat emulsion, which we are the first to report.

"Our experimental data supported by theoretical analyses also mean we could begin to use these plant protein microgels in foods where fat has to be removed to reformulate into healthier next generation plant protein food options."

If you have any questions or would like to get in touch with us, please email info@futureofproteinproduction.com

About the Speaker

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Every week, you’ll receive a compilation of the latest breakthroughs from the global alternative proteins sector, covering plant-based, fermentation-derived and cultivated proteins.
By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.